Identifying the ERAD ubiquitin E3 ligases for viral and cellular targeting of MHC class I.
نویسندگان
چکیده
The human cytomegalovirus (HCMV) US2 and US11 gene products hijack mammalian ER-associated degradation (ERAD) to induce rapid degradation of major histocompatibility class I (MHC-I) molecules. The rate-limiting step in this pathway is thought to be the polyubiquitination of MHC-I by distinct host ERAD E3 ubiquitin ligases. TRC8 was identified as the ligase responsible for US2-mediated MHC-I degradation and shown to be required for the cleavage-dependent degradation of some tail-anchored proteins. In addition to MHC-I, plasma membrane profiling identified further immune receptors, which are also substrates for the US2/TRC8 complex. These include at least six α integrins, the coagulation factor thrombomodulin and the NK cell ligand CD112. US2's use of specific HCMV-encoded adaptors makes it an adaptable viral degradation hub. US11-mediated degradation is MHC-I-specific and genetic screens have identified TMEM129, an uncharacterised RING-C2 E3 ligase, as responsible for US11-mediated degradation. In a unique auto-regulatory loop, US11 readily responds to changes in cellular expression of MHC-I. Free US11 either rebinds more MHC-I or is itself degraded by the HRD1/SEL1L E3 ligase complex. While virally encoded US2 and US11 appropriate mammalian ERAD, the MHC-I complex also undergoes stringent cellular quality control and misfolded MHC-I is degraded by the HRD1/SEL1L complex. We discuss the identification and central role of E3 ubiquitin ligases in ER quality control and viral degradation of the MHC-I chain.
منابع مشابه
Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase.
Ubiquitination controls a broad range of cellular functions. The last step of the ubiquitination pathway is regulated by enzyme type 3 (E3) ubiquitin ligases. E3 enzymes are responsible for substrate specificity and catalyze the formation of an isopeptide bond between a lysine residue of the substrate (or the N terminus of the substrate) and ubiquitin. MIR1 and MIR2 are two E3 ubiquitin ligases...
متن کاملThe TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER
The US2 and US11 gene products of human cytomegalovirus promote viral evasion by hijacking the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. US2 and US11 initiate dislocation of newly translocated major histocompatibility complex class I (MHC I) from the ER to the cytosol for proteasome-mediated degradation, thereby decreasing cell surface MHC I. Despite being instrumental i...
متن کاملMHC class I molecules are preferentially ubiquitinated on endoplasmic reticulum luminal residues during HRD1 ubiquitin E3 ligase-mediated dislocation.
Misfolded MHC class I heavy chains (MHC I HCs) are targeted for endoplasmic reticulum (ER)-associated degradation (ERAD) by the ubiquitin E3 ligase HRD1, and E2 ubiquitin conjugating enzyme UBE2J1, and represent one of the few known endogenous ERAD substrates. The mechanism by which misfolded proteins are dislocated across the ER membrane into the cytosol is unclear. Here, we investigate the re...
متن کاملE3 ubiquitin ligases as cancer targets and biomarkers.
E3 ubiquitin ligases are a large family of proteins that are engaged in the regulation of the turnover and activity of many target proteins. Together with ubiquitin-activating enzyme E1 and ubiquitin-conjugating enzyme E2, E3 ubiquitin ligases catalyze the ubiquitination of a variety of biologically significant protein substrates for targeted degradation through the 26S proteasome, as well as f...
متن کاملTMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I.
The US11 gene product of human cytomegalovirus promotes viral immune evasion by hijacking the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. US11 initiates dislocation of newly translocated MHC I from the ER to the cytosol for proteasome-mediated degradation. Despite the critical role for ubiquitin in this degradation pathway, the responsible E3 ligase is unknown. In a forwar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular immunology
دوره 68 2 Pt A شماره
صفحات -
تاریخ انتشار 2015